Structural Systems

creation.

AEI Team #04-2013

Jenna Dumke Mike Hoffacker Abigail Kun Kristiana McMunn Amanda Small Jeff Sopinski Emily Wychock Pat Zuza

Structural Systems

creation's one true aim is to enhance the quality of the communities we work with through innovative ideas and sustainable design

Ingenuity | Quality | Enjoyment | Integrity

creation.

creation.

Structural Systems

Project Overview

- The Challenge
 - Competition Prompt
 - Team Response
- The Process
- Master Plan
- Site Orientation
- Security Measures
- LEED Certification

performance building

- 2. Address Security for Reading, Pennsylvania
- **3. LEED** Certified
- 4. Budget & Schedule for School District

The term 'high-performance building' means a building that integrates and optimizes on a life cycle basis all major high performance attributes, including energy conservation, environment, safety, security, durability, accessibility, cost-benefit, productivity, sustainability, functionality, and operational considerations.

creation.

The Challenge

Construction & Design issues related to a high

- 1. Innovative Building Systems Approach
- 2. Population:88,000 5th largest city in Pennsylvania
 - 1. Reading has the largest share of citizens living in poverty(37%)
 - 2. Crime Index of 480.8 (National Average of 319.1)
- *3. LEED Silver*
- 4. \$19M & 14 Month Schedule

- The Challenge
 - Competition Prompt
 - Team Response
- The Process
- Master Plan
- Site Orientation
- Security Measures
- LEED Certification

- Construction & Design issues related to a high performance building
- 2. Address Security for Reading, Pennsylvania
- 3. LEED Certified
- 4. Budget & Schedule for School District

The Challenge

1. Innovative Building Systems Approach 2. Population:88,000 5th largest city in Pennsylvania 1. Reading has the largest share of citizens living in

- - poverty(37%)
 - 2. Crime Index of 480.8 (National Average of 319.1)
- 3. LEED Silver
- 4. \$19M & 14 Month Schedule

- The Challenge
- The Process
 - **BIM Execution Planning**
 - Project Information
 - BIM Roles & Organization
 - BIM Objectives & Uses
 - Collaboration Procedures
- Master Plan
- Site Orientation
- Security Measures
- LEED Certification

PROJECT MILE

- Preliminary Plan
- Schematic Desi
- Design Develop
- Construction Do
- **AEI Submission**
- Short List Selec
- Finalist Presenta

creation

The Process

STONE	ESTIMATED START	ESTIMATED COMPLETION	PROJECT DELIVERABLE	INVOLVED PROJECT STAKEHOLDERS
ning	9/1/12	9/14/12	Presentation 1	MEP, Struct, CM
n	9/14/12	10/3/12	Presentation 2	MEP, Struct, CM
nent	10/3/12	10/24/12	Presentation3	MEP, Struct, CM
cuments	10/24/12	11/12/12	Proposal	MEP, Struct, CM
	11/12/12	2/22/12	Electronic Submission	MEP, Struct, CM
on	2/22/12	3/8/12	None	MEP, Struct, CM
tion	3/8/12	4/3/12	Final Presentation	MEP, Struct, CM
	4/5/12	4/5/12	None	MEP, Struct, CM

BIM Execution Planning

Section 1: BIM Project Execution Plan Overview **Section 2: Project Information** Section 3: Key Project Contacts & Staffing Section 4: BIM Roles and Organization Section 5: Project BIM Objectives and Project BIM Uses Section 6: BIM Process Design Section 7: Collaboration Procedures Section 8: Technological Infrastructure Requirements Section 9: Model and Database Structure Section 10: Quality Control Procedures Section 11: Project Deliverables Section 12: Attachments

Structural Systems

- The Challenge
- The Process
 - **BIM Execution Planning**
 - Project Information
 - BIM Roles & Organization
 - BIM Objectives & Uses
 - Collaboration Procedures
- Master Plan
- Site Orientation
- Security Measures
- LEED Certification

creation.

The Process

BIM Execution Planning

Section 1: BIM Project Execution Plan Overview Section 2: Project Information Section 3: Key Project Contacts & Staffing **Section 4: BIM Roles and Organization** Section 5: Project BIM Objectives and Project BIM Uses Section 6: BIM Process Design Section 7: Collaboration Procedures Section 8: Technological Infrastructure Requirements Section 9: Model and Database Structure Section 10: Quality Control Procedures Section 11: Project Deliverables Section 12: Attachments

- The Challenge
- The Process
 - **BIM Execution Planning**
 - Project Information
 - BIM Roles & Organization
 - BIM Objectives & Uses
 - Collaboration Procedures
- Master Plan
- Site Orientation
- Security Measures
- LEED Certification

creation

The Process

TASK	ROLE	Staff Size	Hours Planned	Weeks
lodel Development	Architect(Collaborative) CM Electrical Lighting Mechanical Structural	8 2 2 2 2 2 2	2 hrs/wk 8 hrs/wk 8 hrs/wk 8 hrs/wk 8 hrs/wk 8 hrs/wk	3 8 8 8 8 8 8
Model Review	CM Electrical Lighting Mechanical Structural	2 2 2 2 2 2	1 hr/wk 1 hr/wk 1 hr/wk 1 hr/wk 1 hr/wk	16 16 16 16 16
Structural Analysis & Design	Structural	2	10 hrs/wk	8
Lighting/Electrical Analysis & Design	Lighting/Electrical	2	10 hrs/wk	8
lechanical Analysis & Design	Mechanical	2	10 hrs/wk	8
LEED Certification Plus+ Reviews	Collaborative	8	4 hrs/wk	6
Schedule Development	Construction Manager	2	5 hrs/wk	2
Cost Estimating	Construction Manager	2	10 hrs/wk	2
Value Engineering	Collaborative	8	3 hrs/wk	Ongoing
3D Coordination	Structural Lighting/Electrical Mechanical Construction Manager	2 2 2 2	4 hrs/wk 4 hrs/wk 4 hrs/wk 7 hrs/wk	3 3 3 3
4D Modeling	Construction Manager	2	5 hrs/wk	3

BIM Execution Planning

Section 1: BIM Project Execution Plan Overview Section 2: Project Information Section 3: Key Project Contacts & Staffing **Section 4: BIM Roles and Organization** Section 5: Project BIM Objectives and Project BIM Uses Section 6: BIM Process Design Section 7: Collaboration Procedures Section 8: Technological Infrastructure Requirements Section 9: Model and Database Structure Section 10: Quality Control Procedures Section 11: Project Deliverables Section 12: Attachments

Structural Systems

- The Challenge
- The Process
 - **BIM Execution Planning**
 - Project Information
 - **BIM Roles & Organization**
 - BIM Objectives & Uses
 - Collaboration Procedures
- Master Plan
- Site Orientation
- Security Measures
- LEED Certification

Symbol	Name	Software Uses	Symbol	Name	Software Uses
	AutoCAD	2D Drawing/Modeling	Systems Analysis, Inc.	SKM	Arc Flash Studies
2 5	Trane Trace	Mechanical Load Calculations		Trimble SketchUp	Virtual Mock-Ups
	Autodesk Revit	3D Drawing/Modeling	P	Microsoft Project	Construction Scheduling
(DAYSIM)	Daysim	Daylighting and Electrical Analysis	CostWorks [®] RSMeans	RSMeans CostWorks	Construction Estimation
8	Bentley RAM	Structural System Design	PRIMAVERA	Oracle P6	Construction Scheduling
ACKY.	AGi32	Lighting Calculations	Jds max*	3ds Max	3D Model Rendering
	ETABS	Lateral Structural System Design		Autodesk Navisworks	3D Coordination & 4D Modeling
	Microsoft Excel	Mechanical & Structural Calculations & Estimate Organizational Tool			

The Process

BIM Execution Planning

Section 1: BIM Project Execution Plan Overview Section 2: Project Information Section 3: Key Project Contacts & Staffing Section 4: BIM Roles and Organization Section 5: Project BIM Objectives and Project BIM Uses Section 6: BIM Process Design Section 7: Collaboration Procedures Section 8: Technological Infrastructure Requirements Section 9: Model and Database Structure Section 10: Quality Control Procedures Section 11: Project Deliverables Section 12: Attachments

Structural Systems

- The Challenge
- The Process
 - **BIM Execution Planning**
 - Project Information
 - BIM Roles & Organization
 - BIM Objectives & Uses
 - Collaboration Procedures
- Master Plan
- Site Orientation
- Security Measures
- LEED Certification

creation

The Process

		-
bol	Name	Software Uses
	University Server	Store and share large files and backups, organize documents
	Revit Central Model	Integrated modeling
Drive	Google Drive	Group communication and small document sharing
	GroupMe Application	Informal and 'instant access' group communication
\mathbf{P}	External Hard Drive	Backup all project documents

BIM Execution Planning

Section 1: BIM Project Execution Plan Overview Section 2: Project Information Section 3: Key Project Contacts & Staffing Section 4: BIM Roles and Organization Section 5: Project BIM Objectives and Project BIM Uses Section 6: BIM Process Design **Section 7: Collaboration Procedures** Section 8: Technological Infrastructure Requirements Section 9: Model and Database Structure Section 10: Quality Control Procedures Section 11: Project Deliverables Section 12: Attachments

Structural Systems

- The Challenge
- The Process
- Master Plan
 - Construction Phase 1
 - Construction Phase 2
- Site Orientation
- Security Measures
- LEED Certification

Phase 1 Phase 2

creation.

Master Plan Reading Elementary

- Phase 1 New Construction
- Phase 2 Renovate Existing School for Pool and Clinical Space

Structural Systems

- The Challenge
- The Process
- Master Plan
 - Construction Phase 1
 - **Construction Phase 2**
- Site Orientation
- Security Measures
- LEED Certification

creation.

Phase 1 **Reading Elementary**

Master Plan Details

- \$16,000,000 New Construction
- 12 Month Schedule
- Rammed Aggregate Pier Foundation
- Structural Steel Frame
- Prefabricated Concrete Wall Panels Brick & Limestone Façade
- Clerestories & Ribbon Windows
- Atrium
- Educational Green Roof Space Ground Source Heat Pump System Building Automation System Vandal Resistant Security System

- Bullet Proof Glass Add/Alternate

- The Challenge
- The Process
- Master Plan
 - Construction Phase 1
 - Construction Phase 2
- Site Orientation
- Security Measures
- LEED Certification

Master Plan Details

- \$3,000,000 Renovation
- 3 Month Schedule
- Rammed Aggregate Pier Foundation
- Structural Steel Frame
- Variable Refrigerant Volume with Heat Recovery

creation.

Phase 2 Reading Elementary

(Clinic)

Clinic and Natatorium Plan

Integration

New Construction (Natatorium)

Structural Systems

- The Challenge
- The Process
- Master Plan
- Site Orientation
- Security Measures
- LEED Certification

creation.

Finished Master Plan Reading Elementary

Structural Systems

- The Challenge
- The Process
- Master Plan
- Site Orientation
- Security Measures
- LEED Certification

creation.

Site Orientation

- Project Location:
 - Amity & 13th Streets
- Flip footprint over vertical axis

Integration

ets vertical axis

Structural Systems

- The Challenge
- The Process
- Master Plan
- Site Orientation
- Security Measures
- LEED Certification

creation.

Site Orientation

- Project Location:
 - Amity & 13th Streets
- Flip footprint over vertical axis

Integration

ets vertical axis

Site Orientation

creation.

- Multipurpose space near parkingDaylighting For Perimeter
 - Classrooms
- Maximize Outdoor Space
- Eliminate Interior Bus LoopSecurity and Safety

G P M atio ute

Structural Systems

- The Challenge
- The Process
- Master Plan
- Site Orientation
- Security Measures
- LEED Certification

Unlocked for public access Locked; faculty card swipe access only Locked; emergency exit only

Daytime (6:00 am – 5:00 pm)

creation.

Security Measures

- Visitor entrance, guests must be buzzed in and sign in at front desk

Evenings / Weekends (access to public spaces only)

Security Cameras	Topaz Access Control	Card Readers	Glass Break Sensor
	<figure></figure>		TOT.
Vandal Resistant Security Cameras	Building Control System	Building Access Control	Acoustic and PIR Glass Break Sensor and Transmitter

Also Included:

- K-rated security fence around the property
- Bulletproof glass at Main Visitor Entry
- Integrated building alarm and announcement system

- The Challenge
- The Process
- Master Plan
- Site Orientation
- Security Measures
- LEED Certification

Category
Sustainable Sites
Water Efficiency
Energy & Atmosphe
Materials
Resources
Indoor Environme
Quality
Innovative Design
Regional Priority
Total:

creation.

LEED Silver Certification

	Point Breakdown				
	Points Possible	Points Earned	Comments		
	25	19			
	10	4			
ere	35	13			
&	14	5			
ent	15	9			
	6	1			
	4	1			
	109	52	LEED Silver		

Structural Systems

creation.

Structural Systems

Structural Systems

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

creation.

Design Process

Structural Systems

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

create an **innovative** structural system that reflects our project goals of *functionality*, *efficiency*, and *appeal*

creation.

Structural Systems

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

create an **innovative** structural system that reflects our project goals of *functionality*, *efficiency*, and *appeal*

develop specific requirements for each **package** while considering cost, existing conditions, *coordination between disciplines*, constructability, and other factors

Design Process

Structural Systems

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

create an **innovative** structural system that reflects our project goals of *functionality*, *efficiency*, and *appeal*

develop specific requirements for each **package** while considering cost, existing conditions, *coordination between disciplines*, constructability, and other factors

Design Process

Objective

Electrical Systems

Criteria Calculations and Decision Making Results

Lo	oad Combo)S				Column		
)+	1 2D ±	1.2D +	Pu (kin)	Mu (ft-	Peg		Weight	
+	1.20 +	1.6L +	Fu (Kip)	kip)	req	Size	(Ib/ft)	
s	1.001 + 0	0.5Lr					(invit)	
4.00	55876.00	51876.00	55.88	50.00	175.88	W10x33	33.00	
4.00	55876.00	51876.00	55.88	50.00	175.88	W10x33	33.00	
5.60	129924.00	119124.00	129.92	50.00	249.92	W10x33	33.00	

Structural Systems

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

create an **innovative** structural system that reflects our project goals of *functionality*, *efficiency*, and *appeal*

develop specific requirements for each **package** while considering cost, existing conditions, *coordination between disciplines*, constructability, and other factors

Design Process

Objective

Criteria

Electrical Systems

Lo	.oad Combos			Column				
+ (1 2D ±	1.2D +	Pu (kin)	Mu (ft-	Peg		Weight	
.+	1.20 +	1.6L +	Fu (kip)	kip)	req	Size	(Ib/ft)	
s	1.001 + 0	0.5Lr					(10/11)	
4.00	55876.00	51876.00	55.88	50.00	175.88	W10x33	33.00	
4.00	55876.00	51876.00	55.88	50.00	175.88	W10x33	33.00	
5.60	129924.00	119124.00	129.92	50.00	249.92	W10x33	33.00	

- Design Process
- Phase 1

• Foundation

- Gravity System
- Lateral System
- Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

Design Criteria

Structural Systems

- Adapt to existing soil conditions
- Cost and predictability
- Constructability and schedule

Foundation

Building Footprint

Possible Systems

- 1. Compaction Grouting
- 2. Excavation
- 3. Micropiles
- 4. Rammed Aggregate Piers

34,000 SF total building footprint 7,300 SF basement 615 ft masonry retaining wall

Structural Systems

Design Process

- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium

creation.

Conclusion

Pier Construction Process

Rammed Aggregate Piers

- 240 total piers installed at a rate of 30 to 60 piers per day
- Occupy 30-50% of shallow footing plan area

Foundation

- Use local and recyclable resources
- Increases soil strength and stiffness

Building Footprint

34,000 SF total building footprint 7,300 SF basement 615 ft masonry retaining wall

- Design Process
- Phase 1

• Foundation

- Gravity System
 - Analysis
 - Framing System
 - Floor System
 - Atrium
- Lateral System
- Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

Live Loads (psf) (ASCE7-05) 100 Assembly area movable seats/Gym 100 Corridor on 1st floor 80 Corridor above 1st floor 100 Lobbies 150 Library Stacks 60 Library Reading Room School Classroom 40 50 Offices Stage Floors 150 Stairs/exit ways 100 Ordinary 20 flat/pitched/curved roof Roof used for 100 garden/assembly Walkway/elevated 60 platform

creation.

Gravity System

Design Criteria

- Consider placement of columns and expansion joints
- Adapt to the architecture
- Accommodate all mechanical, electrical, plumping, and lighting elements

Dead Loads (psf)					
Enclosure	Exterior Brick Wall Panel	45			
	Glass Curtain Wall	15			
Roof	Gym Roof	15			
	Flat Roof	15)		
	Sloped Roof	15)		
	Green Roof	20	0		
Floor	Composite Deck	45			
	Superimposed (ceiling,	15	•		
	lights, MEP, etc.)				
	Total for Typical Floor	60)		
Mechanical	Large Air Handling Unit	4000	lbs		
Equipment	Small Air Handling Unit	2000	lbs		

Steel vs. Concrete

Snow Loads (psf)				
Ground	p _g =	30.0		
Flat Roof	p _f =	22.7		
1:12 sloped roof	p _{s1} =	22.7		
1:4 sloped roof	p _{s2} =	22.7		

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Analysis
 - Framing System
 - Floor System
 - Atrium
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

Typical Classroom

Structural Systems

creation.

Gravity System

Framing Layout

- Typical columns W10x33 and W14x61
- Beams range from W8x10 to W16x67
- Typical bay size 28x30
- 14 ft story height

Integration

10x33 and W14x61 W8x10 to W16x67 x30

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Analysis
 - Framing System
 - Floor System
 - Atrium
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium

creation.

Conclusion

Administration

Structural Systems

Gravity System

Framing Layout

- Typical columns W10x33 and W14x61
- Beams range from W8x10 to W16x67
- Typical bay size 28x30
- 14 ft story height

Integration

10x33 and W14x61 W8x10 to W16x67 x30

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Analysis
 - Framing System
 - Floor System
 - Atrium
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

Typical Shear Connection

10 ft cantilever

creation.

Gravity System

Framing Layout

- Typical columns W10x33 and W14x61
- Beams range from W8x10 to W16x67
- Typical bay size 28x30
- 14 ft story height

Integration

10x33 and W14x61 W8x10 to W16x67 x30

Structural Systems

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Analysis
 - Framing System
 - Floor System
 - Atrium
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium

creation.

Conclusion

Gravity System

Typical Floor2VLI20Typical Flat or Sloped Roof1.5BA16Green Roof2VLI18Multipurpose Room Roof1.5BA20

Decking	5
LI20	4.5" Composite Deck w/o Studs
BA16	Metal Non-composite
LI18	5.5" Composite Deck w/o Studs
BA20	Metal Non-composite

Structural Systems

- Design Process
- Phase 1
 - Foundation
 - **Gravity System** •
 - Analysis
 - Framing System
 - Floor System
 - Atrium
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

creation.

Atrium

Design Criteria

- Consider aesthetics of exposed structural members
- Develop a creative solution to support cantilevered walkways
- Provide redundancy and possible additional loads

5' 6" cantilevered W14x38 beams

Structural Systems

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Braced Frames
 - Shear Walls
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

creation.

Electrical Systems

First Floor Plan

Lateral System

Design Criteria

- Minimize torsional effects
- Provide redundancy
- Adapt to the architecture and limit obstruction of open space

Structural Systems

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Braced Frames
 - Shear Walls
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

Wind Lo	oad A	Inaly	ysis
---------	-------	--------------	------

	Total Base Shear (k)		Overturning Moment (k-ft)
Building 1	N/S	16.0	445
	E/W	75.6	2100
Building 2	N/S	123	3444
	E/W	62	1730
Building 3	N/S	149	4200
	E/W	33	924
Multipur-	N/S	678	1890
pose	E/W	29	812

Lateral System

Design Criteria

- Minimize torsional effects
- Provide redundancy
- Adapt to the architecture and limit obstruction of open space

Total Building Weight (kips)			
Building 1	1540		
Building 2	1812		
Building 3	1109		

Integration

First Floor Plan

Building 3

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Braced Frames
 - Shear Walls
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium

creation.

Conclusion

ETABS Model Building 2

Building 1

Structural Systems

Braced Frames

First Floor Plan

W14X61 (2) W14X68 W14X68 Frame #2 Frame #5 Building 3

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Braced Frames
 - Shear Walls
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium

creation.

Conclusion

Systems
Systems

Reinforcement Requirements for					
Masonry Shear Walls					
Wall	Bar #	Total Length (ft)			
1	8	72			
	4	1190			
	3	18			
2	8	180			
	4	404			
	3	63			
3	8	180			
	4	404			
	3	63			
4	8	240			
	4	516			
	3	168			

Shear Wall

Multipurpose

Reinforced Masonry Shear Walls

Masonry Properties				
	10" stacked block, fully grouted	f'c = 1500 psi		
Space	10" stacked block, fully grouted	f'c = 1500 psi		

Integration

Wall #4

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Enclosure
 - Walls
 - Roof
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

Structural Systems

Glass curtain wall

1st and 2nd floor curtain wall

creation.

Integration

Secondary shear reinforcement

3" exterior concrete wythe

Architectural face brick

- R-Value
- Lightweight
- Architectural Flexibility
- Receptacle layout
- Local contractors

Inte M atio 5 ute

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Enclosure
 - Walls
 - Roof
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

Structural Systems

Glass curtain wall

Green Roof

creation.

Enclosure

Clerestories Air Handlers Atrium Roof Multipurpose

K-series joists fabricated with oversized slots in top chord anchored to steel bearing plate

Integration

Insulated roof prevents joist movement due to temperature change

- AHU Placement
- High reflectance
- Cost considerations of additional features • Placement of green roof

EXTENSIVE

Vegetation

LiteTop® Growing Media

Systemfilte

Gardendrain GR15® or GR30ª

STYROFOAM[®]

Root Stop

Hydroflex 30®

MM6125[®]EV-FR

Approved Substrate

(typical components depict

nt P po T atio ute

- AHU Placement
- High reflectance
- Cost considerations of additional features • Placement of green roof

Photovoltaic Panels 20+ Year Payback Period

EXTENSIVE

Vegetation

LiteTop® Growing Media

Systemfilte

ardendrain GR15® or GR30ª

STYROFOAM[®]

Root Stop

Hydroflex 30®

MM6125[®]EV-FR

Approved Substrate

(typical components depict

nt P po T atio ute

Structural Systems

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium

creation.

Conclusion

Clinic and Natatorium Plan

Renovation

Design Criteria

 Create an iconic building that the community can be proud of

Phase 2

- Utilize existing building
- Develop a creative solution to spanning the large pool space

Integration

New Construction

Structural Systems

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium

creation.

Conclusion

Clinic

By reusing the existing building we assumed *no additional upgrades to the structure* would be required for the renovation portion of **Phase 2**

Assumptions

- Steel structure
- Modular spaced bays with moment connections

Clinic and Natatorium Plan

Structural Systems

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

- Prefabricated insulated metal deck panels
- W21x147 girders and W12x30 purlins
- Vertical and slanted PIPE10 and PIPE5 hollow circular steel columns
- Extra roof drainage

creation.

Natatorium

Clinic and Natatorium Plan

Integration

New Construction

Structural Systems

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

creation.

Natatorium

Natatorium

- Lane lighting requirements
- Corrosion prevention
- All-encompassing AHU
- Daylighting Concerns
- Community

Integra atio 5 ute

- Design Process
- Phase 1
 - Foundation
 - Gravity System
 - Lateral System
 - Enclosure
- Phase 2
 - Clinic
 - Natatorium
- Conclusion

creation

- Structural steel frame with typical bay size 28'x30'
- W10 and W12 columns spliced at 3rd floor
- Beams range from W8 to W16
- Braced frames and reinforced masonry shear walls
- Composite metal deck roof and floors
- Precast concrete panel enclosure

Electrical Systems

Summary

Phase 1 Systems

Phase 2 Systems

- 75 ft natatorium
- W21x147 girders and W12x30 purlins
- circular steel columns

Integration

• Prefabricated insulated metal deck panels span

• Vertical and slanted PIPE10 and PIPE5 hollow

Structural Systems

Mechanical Systems

creation.

Mechanical Systems

Electrical Systems

- Introduction
- HVAC Design
- Plumbing Design

creation.

Conclusion

Construction Phase 1

Enclosure **Total energy reduction of 15%**

Ground Source Heat Pump with 100% DOAS

Total energy reduction of 17%

Building total energy reduction of 32%

Plumbing

Water use reduction by 46%

As a BIM team, we determined our project specific goal was to create an innovative, high-performance environment in a way that stimulates involvement in both education and the community

Introduction

Clinic

Construction Phase 2

Natatorium

Integration

VRV with Heat Recovery **Total energy reduction of 13%**

All- encompassing AHU **Total reduction of 1,398MMBTH or** \$3,850

Structural Systems

Mechanical Systems

Electrical Systems

Construction Phase 1

Reading Elementary School

Structural Systems

- Introduction
- HVAC Design
 - Construction Phase 1
 - Enclosure Design
 - System Design
 - Construction Phase 2
- Plumbing Design
- Conclusion

Wall Design U-Va Window Design **Roof Design U-V**

Green Roof Savir

ENCLOSURE DESIGN

REDUCED ENERGY CONSUMPTION BY: 15%

	ASHRAE 50%				
	ASHRAE 90.1	Energy Savings	Our Value		
alues	0.069	0.037	0.0383		
U-Values	0.55	0.45	0.54		
alues	0.048	0.0333	0.0333		
ngs			\$430/year		

Electrical Systems

- Secondary
- reinforcement
- 3" Exterior
- concrete
- Architectural

- Introduction
- HVAC Design
 - Construction Phase 1
 - Enclosure Design
 - System Design
 - Airside System
 - Waterside System
 - Construction Phase 2
- Plumbing Design
- Conclusion

Structural Systems

creation.

Electrical Systems

SYSTEM CONSIDERATIONS

Critical Zones

- Introduction
- HVAC Design
 - Construction Phase 1
 - Enclosure Design
 - System Design
 - Airside System
 - Waterside System
 - Construction Phase 2
- Plumbing Design
- Conclusion

Structural Systems

.

.

Atrium

Electrical Systems

SYSTEM CONSIDERATIONS

Critical Zones

Atrium

- Introduction
- HVAC Design
 - Construction Phase 1
 - Enclosure Design
 - System Design
 - Airside System
 - Waterside System
 - Construction Phase 2
- Plumbing Design

creation.

Conclusion

Classroom

Structural Systems

Mechanical Systems

Electrical Systems

SYSTEM CONSIDERATIONS

Critical Zones

Atrium

Classroom

- Introduction
- HVAC Design
 - Construction Phase 1
 - Enclosure Design
 - System Design
 - Airside System
 - Waterside System
 - Construction Phase 2
- Plumbing Design

creation.

Conclusion

Administration

Structural Systems

Mechanical Systems

Electrical Systems

SYSTEM CONSIDERATIONS

Atrium

Classroom

Administration

- Introduction
- HVAC Design
 - Construction Phase 1
 - Enclosure Design
 - System Design
 - Airside System
 - Waterside System
 - Construction Phase 2
- Plumbing Design
- Conclusion

Multipurpose

Facility

creation.

Structural Systems

SYSTEM CONSIDERATIONS

Critical Zones

Atrium

Classroom

Administration

Integration

Multipurpose Facility

- Introduction
- HVAC Design
 - Construction Phase 1
 - Enclosure Design
 - System Design
 - Airside System
 - Waterside System
 - Construction Phase 2
- Plumbing Design
- Conclusion

Corridor

creation.

Structural Systems

Mechanical Systems

Electrical Systems

SYSTEM CONSIDERATIONS

Critical Zones

Atrium

Classroom

Administration

Integration

Multipurpose Facility

Corridor

- Introduction
- HVAC Design
 - Construction Phase 1
 - Enclosure Design
 - System Design
 - Airside System
 - Waterside System
 - Construction Phase 2
- Plumbing Design
- Conclusion

Structural Systems

Kitchen

Electrical Systems

SYSTEM CONSIDERATIONS

Critical Zones

Atrium

Classroom

Administration

Integration

Multipurpose Facility

Corridor

Kitchen

- Introduction
- HVAC Design
 - Construction Phase 1
 - Enclosure Design
 - System Design
 - Airside System
 - Waterside System
 - Construction Phase 2
- Plumbing Design
- Conclusion

Ventilation CFM

Total Ventilation : 35,996 CFM

creation.

Mechanical Systems

Electrical Systems

VENTILATION DESIGN

- Introduction
- HVAC Design
 - Construction Phase 1
 - Enclosure Design
 - System Design
 - Airside System
 - Waterside System
 - Construction Phase 2
- Plumbing Design
- Conclusion

NEUTRAL SUPPLY AIR CONDITION (~70°F)

CONTROL SYSTEM

creation.

Electrical Systems

AIRSIDE DESIGN

Dedicated Outdoor Air System

• Wastes sensible cooling done by the AHU • Takes all the latent load

COLD SUPPLY AIR CONDITION (~55°F)

• Takes the majority of latent and sensible loads • Offset larger portion of the sensible load • REDUCED HEAT PUMP SIZE BY 48%

• Occupancy sensors

• CO₂ Sensors

• Outdoor Air Economizer

SPLIT SYSTEM SCHEMATIC

Integration

HEAT PUMP RA

Total Heat Pumps: 61

System Placement Coordination

- Window Sizing
- Beam Depths
- Braced Frame
- Fire Alarm and Announcements
- Heat Pump Closet vs. Architecture

G P M at ute

- System Placement Coordination
- Window Sizing
- Beam Depths
- Braced Frame
- Fire Alarm and Announcements
- Heat Pump Closet vs.
 - Architecture

- Introduction
- HVAC Design
 - Construction Phase 1
 - Enclosure Design
 - System Design
 - Airside System
 - Waterside System
 - Construction Phase 2
- Plumbing Design

creation.

Conclusion

2 VFD Pumps

66.2 ftH2O, 453 GPM

COOLING

- 54 Bore Holes

HEATING

- Block Load: 44 tons •
- Heat pump entering water temp: 45F •
- Length: 9500Ft (215 ft/ton)
- 16 Bore Holes

$$L_{c} = \frac{q_{a}R_{ga} + (q_{lc} - 3.41W_{c})(R_{b} + \text{PLF}_{m}R_{gm} + R_{gd}F_{sc})}{t_{a} - \frac{t_{wi} + t_{wo}}{2} - t_{n}}$$

WATERSIDE DESIGN

Ground Source Heat Pump System

Block Load: 151 tons Heat pump entering water temp: 75F Length: 26,400ft (175 ft/ton)

Mechanical Systems

Electrical Systems

Construction Phase 2

Clinic and Natatorium

- Introduction
- HVAC Design
 - Construction Phase 1
 - **Construction Phase 2**
 - Assumptions
 - Clinic
 - Natatorium
- Plumbing Design
- Conclusion

Structural Systems

- 120/208 Volt, 3 phase power •
- Exterior façade will remain the same for clinic space • Walls and windows closely resembled the standard set forth by ASHRAE 90.1

creation.

PHASE 2 ASSUMPTIONS

Key Mechanical Assumptions:

Existing Air Handling Unit will be disconnected from existing first floor and will remain in use for the second and third floors

Existing exhaust fans are adequately sized to

account for the clinic space. Clinic space will tap into exhaust shaft where previous first floor connected. Clinical space roof can support second Air Handling Unit for natatorium

- Introduction
- HVAC Design
 - Construction Phase 1
 - **Construction Phase 2**
 - Assumptions
 - Clinic
 - Airside System
 - Refrigerant System
 - Natatorium
- Plumbing Design

creation.

Conclusion

Variable Refrigerant Volume System with Heat Recovery

CLINIC

Low maintenance

System Components:

Integration

Little space disruption Inexpensive compared to modular chillers Long Life

100% Outdoor Air Processing Unit Indoor Condensing Unit Fan Coils

Structural Systems

- Introduction
- HVAC Design
 - Construction Phase 1
 - Construction Phase 2
 - Assumptions
 - Clinic
 - Airside System
 - Refrigerant System
 - Natatorium
- Plumbing Design
- Conclusion

creation.

Ventilation Rates							
	Rp(CFM/per)	Ra (CFM/SF)					
Patient	25	0					
Double Patient	25	0					
XRAY	25	0.3					
Nurse Station	7.5	0.3					
Med Storage	5	0.6					
Soiled Utitlity	5	0.6					
Clean Supply	10	0.6					
Office	5	0.3					
Break Room	5	0.3					
Office Supply	5	0.3					
Front Desk	5	0.3					
Room 24	5	0.06					
Lavatory	5	0.06					
Storage Closet	0	0.6					
Electrical Closet	0	0.3					
Corridor	0	0.3					
Waiting Room	7.5	0.3					

AIRSIDE DESIGN 135F Room 195 SF Ratient Patient *╴*╒╒┲┲┲┲╕╕ 111 SF 113 SF <u>_#__J___L_</u>__<u></u>_____

- Retrofit tie into existing water loops
- Little disruption
- Time of construction
- Use of existing power equipment

ntegratio 5 ute

- Introduction
- HVAC Design
 - Construction Phase 1
 - **Construction Phase 2**
 - Assumptions
 - Clinic
 - Airside System
 - Refrigerant System

Water Loop Connection

Thermometer

HEAT PUMP

Stop Valve Adjustable Flange

HEAT RECOVERY

Water Drain Valve

- Natatorium
- Plumbing Design

creation.

Conclusion

Structural Systems

Mechanical Systems

Electrical Systems

REFRIGERANT DESIGN

WIII	WIII - Indoor Condensing Unit with Heat Recovery Schedule						
ull ad ER	Heating Capacity	Full Load COP	Power	Liquid Pipe Size	Suction Gas Pipe Size	Discharge Gas Pipe Size	Maximum #of Indoor Units
5.1	162,000	5.3	208/120	1/2"	1 1/8"	7/8"	20

Structural Systems

- Introduction
- **HVAC** Design
 - Construction Phase 1
 - **Construction Phase 2**
 - Assumptions
 - Clinic
 - Natatorium
 - Airside System
- Plumbing Design

creation.

Conclusion

Ventilation

Pool Area Ventilation: 2400 CFM Spectator Ventilation: 2260 CFM

Exhaust

Pool Area Exhaust: 2640 CFM Spectator Exhaust: 2490 CFM Moisture Load Day (active): 51 Lb/hr Night (inactive): 0 Lb/hr **Evaporation Rate** Day (active): 102 Lb/hr Night (inactive): 51 Lb/hr

NATATORIUM

All-encompassing AHU

Duct Design

80% air directed wall wash 20% air directed at ceiling

Surface Temperature

Heating: 59°F Cooling: 84°F

AHU Provides:

Ventilation Dehumidification Heat Recovery

Integration

Pool Savings \$3,850/year

- Introduction
- HVAC Design
- Plumbing Design
 - Water Use Reduction
 - Pipe Sizing
- Conclusion

Lavatory Faucets Water Closets Urinals

creation.

Mechanical Systems

Electrical Systems

PLUMBING DESIGN

Baseline Flow		Our Design		
Rate	Baseline Cost	Flow Rate	Our Cost	Savings
1.6 gpf	\$22.95	1.1 gpf	\$15.78	\$7.17
1.5 gpm	\$16.13	0.5 gpm	\$5.38	\$10.75
1.0 gpf	\$7.17	0 gpf	\$0.00	\$7.17

WATER USE REDUCTION

- Low flow plumbing fixtures
- Waterless Urinals
- Total Uses as Designed/Baseline Usage •
 - 46% Reduction
 - Saves \$9,160/year

Project Overview	Structural Systems			Mecha	nical Systems	
 Introduction HVAC Design Plumbing Design 	4″ CW 3″ HW ¾″ HWR			PLUMBING	B DESIGN	
Water Use Reduction		Interna	ationa	l Plumbing Code:		
Pipe Sizing		•	Table	604.3		
Conclusion		•	Wate	r Closet	4gpm	
		•	Show	ers	3gpm	
		•	Sinks		3gpm	
		•	Comn	nercial Dishwashers	6 6gpm	
// <u></u> _// <u></u>				DOMESTIC HOT WATE	ER DEMAND LOADS	
		Fixture	#	Connection Size	Gallons/hour (4 ft/s)	Total (4 ft/s)
		Lavatory Sink	85	1/2"	2	170
		Service Sink	6	1 1/4"	15	90
		Kitchen Sink	6	1 1/4"	15	90
		Dishwasher	2	1 1/2"	150	300
						Total: 650
					X Demand Factor	r (0.25) 162.5
creation.						

Electrical Systems

le	604.3	
_		_

- Introduction
- HVAC Design
- Plumbing Design
- Conclusion

Ground Source Heat Pump with 100% DOAS

Total energy reduction of 32%

creation.

CONCLUSION

Construction Phase 1

Construction Phase 2

Clinic

VRV with Heat Recovery

Total energy reduction of 13%

All- encompassing AHU Natatorium Total savings 1,398MMBTH or \$3,850

creation.

Lighting/Electrical Systems

- Introduction
 - Goals
- Phase 1 Design
- Phase 2 Design

create an **energy efficient** lighting and electrical system that provides a *functional* and *user friendly* design

Design Process

- Introduction
 - Goals
- Phase 1 Design
- Phase 2 Design

create an **energy efficient** lighting and electrical system that provides a *functional* and *user friendly* design

implement a design that meets codes and requirements while achieving our *team and option goals*

Design Process

Goals Criteria Calculations Results

- Introduction
 - Goals
- Phase 1 Design
- Phase 2 Design

create an **energy efficient** lighting and electrical system that provides a *functional* and *user friendly* design

implement a design that meets codes and requirements while achieving our *team and option goals*

Design Process

use state-of-the-art software and innovative ideas to meet design criteria and goals

Structural Systems

Introduction

- Phase 1 Design
 - Electrical System Overview
 - Lamp Comparisons
 - Site & Façade Lighting
 - Enclosure
 - Atrium
 - Classrooms
 - Library
 - Multipurpose Room
- Phase 2 Design

creation.

Suggested Building Equipment

уре	Number	Specification	Voltage
anelboard	16	100A, 42 Pole	480/277V
anelboard	2	225A, 42 Pole	480/277V
1DP	1	400A, 42 Pole	480/277V
anelboard	1	100A, 42 Pole	208/120V
anelboard	10	225A, 42 Pole	208/120V
1DP	3	400A, 42 Pole	208/120V
n-Switchboard Breaker	1	20A CB	208V
n-Switchboard Breaker	1	30A CB	208V
n-Switchboard Breaker	1	225A CB	208V
n-Switchboard Breaker	1	300A CB	208V
witchboard	1	Switchboard	480/277V
utomatic Transfer Switch	1	1000A ATS	480/277V
utomatic Transfer Switch	1	225A ATS	480/277V
utomatic Transfer Switch	2	100A ATS	480/277V
enerator	1	350KW	480/277V
ransformer	3	150 KVA	480V to 120/208V
ransformer	1	112.5 KVA	480V to 120/208V

Lig

Po

M

Em Em

Electrical Systems

Phase 1 – Electrical System Overview

Total Building Load 714.5 kVA

ре	kVA
hting Load	65.5
wer Load	242.8
echanical Equipment	311.9
nergency Loads: Life Safety	10.2
nergency Loads: Critical	221.1

Lighting Design Achievements

- Lighting loads 42% below the ASHRAE 2010 Standard 90.1 Space-by-Space lighting requirements
- Total watts used by the lighting system is approximately 50,083 W, well below the allowed 85,871 W.
- Low wattage, high efficiency lamps and fixtures
- Energy saving controls
- Ideal daylighting systems

Generator Information

• Serves entire 1st floor and egress lighting in rest of building

- Generator shared with Phase 2
- 350kW total load
- Load shedding ability
- 27 hour diesel generator

Integration

WEATHERPROOF ENCLOSURE

RUN TIME HOURS	USABLE CAPACITY (GAL)	L	W	Н	WT	dBA*
NO TANK	-	175	58	78	8106	
7	183	175	58	91	9054	
17	438	175	58	103	9366	05
27	693	175	58	115	9669	00
3/	946	206	55	118	11313	
52	1325	278	58	118	12146	

Structural Systems

Introduction

- Phase 1 Design
 - Electrical System Overview
 - Lamp Comparisons
 - Site & Façade Lighting
 - Enclosure
 - Atrium
 - Classrooms
 - Library
 - Multipurpose Room
- Phase 2 Design

Other General Purpose Lighting

- AVANA

MI

	Fixtures/ Room	Watts/ Lamp	Hours/ Year	kWh/ Year	Room Energy Usage/Year	Maintenance Costs/Lamp/Year	Ballast Costs	Lamp Costs	Lamp Lifespan	Fixture Cost	Fixture Lifespan	Initial Fixture Cost	Lifetime Cost
T5 (4ft)	12	28	2600	72.8	\$58.53	\$5.00	\$52.00	\$4.75	9.2	\$150.00	20	\$2,169.00	\$4,918.12
T8 (4ft)	12	32	2600	83.2	\$66.89	\$5.00	\$46.00	\$2.75	9.2	\$120.00	20	\$1,749.00	\$4,601.36
LED (4ft)	8	60	2600	156	\$83.62	\$2.00	\$0.00	\$0.00	20.0	\$260.00	20	\$2,080.00	\$4,072.32

Selection: **28W T8 Lamp**

creation.

Lamp Comparisons

Classroom and General Purpose Lighting

High Bay Multipurpose Room & Natatorium Lighting

	Fixtures/ Room	Watts/ Lamp	Hours/ Year	kWh/ Year	Room Energy Usage/Year	Maintenance Costs/Year	Ballast Cost	Lamp Costs	Lamp Lifespan	Fixture Cost	Fixture Lifespan	Initial Fixture Cost	Lifetime Cost
6LT5	15	324	2600	842.4	\$846.61	\$15.00	\$23.00	\$4.75	9.2	\$160.00	20	\$3,862.50	\$26,832
6LT8	24	190	2600	494	\$794.35	\$15.00	\$21.00	\$2.75	9.2	\$120.00	20	\$4,788.00	\$29,849
250W MH	20	275	2600	715	\$958.10	\$10.00	\$32.00	\$28.00	7.7	\$140.00	20	\$8,080.00	\$29,338
350W LED	24	350	2600	910	\$1,463.28	\$2.00	\$0.00	\$0.00	19.2	\$450.00	20	\$10,800.00	\$41,026

Electronic Dimming Ballast

Selection: 54W T5HO Lamp **Stepped Dimming Ballast**

Structural Systems

Introduction

• Phase 1 Design

- Electrical System Overview
- Lamp Comparison
- Site & Façade Lighting
- Enclosure
- Atrium
- Classrooms

creation.

- Library
- Multipurpose Room
- Phase 2 Design

Electrical Systems

Baseball Field

Fixture De Glare and U

Base

Infield Illuminance Values

Outfield Illuminance Values

Power Densi

Site & Façade Lighting

ure Description	Mounting	Lamp
Mounting Street Lamp	Pole	89W LED
opy Light	Surface	37W LED
Bollard	Pole	10W LED
l Pack	Wall	26W LED
round Spot Light	In Ground	9W LED

Clinic Park	ing	Criteria	As Designe
Horizontal	Avg. (fc)	0.8	1.66
Parking Lot	Max. (fc)		2.8
Illuminance	Min. (fc)	0.2	0.3
mannance	Max:Min	20:1	9:01
Vertical Parking	Avg. (fc)	0.5	0.9
Lot Illuminance	Max. (fc)		2.5
@ 5'	Min. (fc)	0.1	0.2
Power Density (W	//SF)	0.06	0.053

School Par	king	Criteria	As Designed
Horizontal	Avg. (fc)	0.8	1.88
Porking Lot	Max. (fc)		3
	Min. (fc)	0.2	0.6
mannance	Max:Min	20:1	5:1
Vertical Parking	Avg. (fc)	0.5	0.81
Lot Illuminance	Max. (fc)		2.8
@ 5'	Min. (fc)	0.1	0.3
Power Density (W	//SF)	0.06	0.053

Main Ent	Criteria	As Designed	
	Avg. (fc)	2	2
Illuminance	Max. (fc)	5	4.3
Values	Min. (fc)	0.2	0.5
	Max:Min	10:1	8.5:1
Power Density (W	//SF)	0.25	0.07

scription	Mounting	Lamp
Uplight Reducing Sports Light	Pole	400W MH

all Field	Criteria	As Designed
Avg. (fc)	50	43.9
Max. (fc)		52.7
Min. (fc)	25	29.9
Max:Min	2:1	1.5:1
Avg. (fc)	30	24.6
Max. (fc)		45.9
Min. (fc)	12	11.6
Max:Min	2.5:1	2.2:1
ty (W/SF)	1.2	0.79

Introduction

- Phase 1 Design
 - Electrical System Overview
 - Lamp Comparison
 - Site & Façade Lighting
 - Enclosure
 - Atrium
 - Classrooms

creation.

- Library
- Multipurpose Room
- Phase 2 Design

Clerestory Analysis

Structural Systems

Clerestory Analysis	Without Clerestory	With Clerestory
Energy Savings (kWh)	485	720
Cost Savings (\$)	\$32.50	\$48.24

Fins

West Classroom Analysis

- **Direct Sunlight Penetration**
- 800 hrs/ school year **50%** of the year

Glazing Types

Double High Performance Tint (Argon) Double Low Solar Low-E Clear (Air)

Double Glazed Triple Silver Low-E (Argon)

Assembly Max. U-Value: 0.55 Assembly Max. SHGC: 0.40

http://www.padihamglass.co.uk/img/full_ti nts-hpp-01.jpg

Direct Sunlight Penetration

540 hrs/ school year **33%** of the year

Integration

Glazing

Assembly U-Value	Assembly SHGC	VT
0.54	0.39	0.607
0.40	0.382	0.701
0.35	0.272	0.638

ASHRAE Standard 90.1 Building Envelope Requirements

Structural Systems

Introduction

• Phase 1 Design

- Electrical System Overview
- Lamp Comparison
- Site & Façade Lighting
- Enclosure
- Atrium
- Classrooms
- Library
- Multipurpose Room
- Phase 2 Design

creation.

Enclosure

Final Static Shading Solutions

- 1. Lightshelves
- 2. Lightshelves
- Clerestories 3.
- 4. Lightshelves and Clerestories

Fenestrations

- Frame

 Visible Transmittance SHGC Effect on Mechanical Loads • Glazing Selection and Pricing Curtain Wall – Connection to Steel

Bulletproof Glass Add-Alternate

G D **M** Ite

Structural Systems

- Introduction
- Phase 1 Design
 - Electrical System Overview
 - Lamp Comparison
 - Site & Façade Lighting
 - Enclosure
 - Atrium
 - Classrooms
 - Library
 - Multipurpose Room
- Phase 2 Design

creation.

Atrium

December 21st @ Noon

Avg. Illuminance: **53 fc** Avg. Illuminance: **25 fc** Target Avg. Illuminance: 10 fc

Note: All calculations were analyzed with a Partly Cloudy Sky

Structural Systems

• Introduction

• Phase 1 Design

- Electrical System Overview
- Lamp Comparison
- Site & Façade Lighting
- Enclosure
- Atrium
- Classrooms

creation.

- Library
- Multipurpose Room
- Phase 2 Design

Lighting Design Details:

- LED spotlights highlight art work from above (38' AFF) and below (14' AFF)
- Occupancy sensors and photo sensor controls and manual switch
- Decorative pendants to illuminate walkways to the restrooms

Lobb	ies		Criteria	As Designed
Lobbios : Davtimo	25-65	Avg. (fc)	10	11
LUDDIES . Daytime	yrs	Avg:Min	4:1	4:1
Lobbios : Nighttimo	25-65	Avg. (fc)	5	5.4
LODDIES . Mightume	yrs	Avg:Min	4:1	4:1
Power Density (W/SF)			0.9	0.86

Fixture Description	Mounting	Lamp
LED Spotlight	Surface	15W LED
LED Circular Pendant	Suspended	20W LED
8' Linear Pendant	Suspended	(1) 28W T8

Reading Rail-Load
Roof Material Selection
Cantilevers
3 Story Opening – Smoke Control

Integr atio 5 ~ 5 ute

Reading Rail-Load
Roof Material Selection
Cantilevers **3 Story Opening – Smoke Control**

Smoke Control Options

- Passive vs. Active System
- Exhaust Required
- Automatic Doors

3) ute

Structural Systems

Introduction

- Phase 1 Design
 - Electrical System Overview
 - Lamp Comparison
 - Site & Façade Lighting
 - Enclosure
 - Atrium
 - Classrooms

creation.

- Library
- Multipurpose Room
- Phase 2 Design

Lighting Design Details:

- 14' floor-to-floor (exposed ceiling)
- Linear pendants suspended 8' AFF with 80%/20%, uplight/downlight
- **Occupancy sensor, photosensors and** scene control panel
- Photosensor controls the two rows of fixtures closest to the window.
- Automated roller shades activated with A/V setting.

Classro	oms		Criteria	As Designed
Classroom	25-65	Avg. (fc)	40	38
Classiooni	yrs	Avg:Min	2:1	2:1
M/bitabaard	25-65	Avg (Vert.)	30	27.2
whiteboard	yrs	Avg:Min	3:1	2.2:1
Power Density (W/SF)			1.24	1.15

Fixture Description	Mounting	Lamp
8' Linear Pendant	Suspended	(2) 28W T8
Undercabinet LED Strip	Surface	10W/LF LED
LED Desk Lamp	Surface	10W LED

Total Classroom Energy Savings from Photosensors 28,360 kWh/year \$1,900/year

Integration

Classroom Scene Settings

• Introduction

• Phase 1 Design

- Electrical System Overview
- Lamp Comparison
- Site & Façade Lighting
- Enclosure
- Atrium
- Classrooms
- Library
- Multipurpose Room
- Phase 2 Design

Structural Systems

Classroom Electrical & Fire Alarm System

General Rules Followed:

- 7 under floor duplex receptacles
- 2 GFCI receptacles over the sink area
- 2 convenience receptacles

creation.

Typical Classroom Layout

Typical Classroom Equipment

Туре	Quantity	Wattage
Computer	42	200
Projector	42	230
Television	48	158
Screen	48	n/a
Motorized Shades	130	n/a
Printer/Copy/Fax Machine	4	1104
Phone	48	n/a
Window Break Devices	130	n/a

Structural Systems

• Introduction

• Phase 1 Design

- Electrical System Overview
- Lamp Comparison
- Site & Façade Lighting
- Enclosure
- Atrium
- Classrooms

creation.

- Library
- Multipurpose Room
- Phase 2 Design

Lighting Design Details:

- LED cove lighting design separates stacks and reading area
 - 8' drop ceiling
 - Gypsum ceiling in cove area
 - 2'x2' ceiling tiles elsewhere
- LED pendants over librarian desk for additional light

Libra	ry		Criteria	As Designed
Book Stacks : General	<25 yrs	Avg. (fc)	10	13.1
@ Floor	~25 yis	Avg:Min	2:1	2:1
Book Stacks : Shelving	<25 yrs	Avg. (fc)	15	18.5
@ 2.5' AFF	~25 yis	Avg:Min	2:1	2:1
Lending Desk : Staffed	25-65	Avg. (fc)	50	55
Area	yrs	Avg:Min	2:1	1.2:1
Pooding Aroos	<25 yrs	Avg. (fc)	25	26
neaung Areas	~25 YIS	Avg:Min	2:1	1.7:1
Power Density (W/SF)			0.93	0.57

8' AFF

Electrical Systems

Fixture Description	Mounting	Lamp
2'x4' Volumetric	Recessed	28W T8
6"x6" LED Downlight	Recessed	27W LED
LED Cove Lighting	Surface	6.8W/LF LED
LED Circular Pendant	Suspended	20W LED

Structural Systems

• Introduction

• Phase 1 Design

- Electrical System Overview
- Lamp Comparison
- Site & Façade Lighting
- Enclosure
- Atrium
- Classrooms
- Library
- Multipurpose Room
- Phase 2 Design

creation.

Lighting Design Details:

- Gym fixtures mounted to 32" trusses
- LED downlights use for ambient stage lighting
- Set of theatrical lighting spotlights can be spec'd
 - Additional lighting can be added by request of the owner

Multi-Purpose Room		Criteria	As Designed	
Assembly :	<25 yrs	Avg. (fc)	0.5	3.2
A/V No Notes	~25 yis	Avg:Min	2:1	1.3:1
Assembly :	<25 yrs	Avg. (fc)	25	32
Speaker/Panel	~25 y15	Avg:Min	3:1	2.3:1
Dhuc Ed	<25 vrs	Avg. (fc)	25	32
riiys. Lu	~2J y13	Avg:Min	3:1	2.3:1
Cafataria	<25 vrs	Avg. (fc)	7.5	14
Caletena	~25 y15	Avg:Min	3:1	2.3:1
Baskothall Class 2	25-65	Avg. (fc)	50	49
Dasketball - Class 5	yrs		3:1	1.3:1
Power Density (W/SF)			1.2	0.97

Electrical Systems

Multipurpose Room

ixture Description	Mounting	Lamp
ected Gym Luminaire	Suspended	(6) 54W T5HO
'x6" LED Downlight	Recessed	27W LED

Integration

2

Structural Systems

• Introduction

• Phase 1 Design

- Electrical System Overview
- Lamp Comparison
- Site & Façade Lighting
- Enclosure
- Atrium
- Classrooms
- Library
- Multipurpose Room
- Phase 2 Design

creation.

Lighting Design Details:

- One scene control panel on each side of mobile partition
- Each panel controls half of the fixtures
- 2 lamp electronic ballasts are used
- Different light levels are reached by switching
- Occupancy sensors and photosensors

Multi-Purpose Room		Criteria	As Designed	
Assembly :	<25 yrs	Avg. (fc)	0.5	3.2
A/V No Notes	~25 yrs	Avg:Min	2:1	1.3:1
Assembly :	<25 yrs	Avg. (fc)	25	32
Speaker/Panel	~25 yrs	Avg:Min	3:1	2.3:1
Phys. Ed		Avg. (fc)	25	32
Fliys. Lu	~23 yrs	Avg:Min	3:1	2.3:1
Cafataria	<25 vrs	Avg. (fc)	7.5	14
Caletella	~25 yrs	Avg:Min	3:1	2.3:1
Basketball - Class 3	25-65	Avg. (fc)	50	49
	yrs	Avg:Min	3:1	1.3:1
Power Density (W/SF)			1.2	0.97

Mechanical Systems

Electrical Systems

1

Multipurpose Room

Integration

2

Structural Systems

Introduction

• Phase 1 Design

- Electrical System Overview
- Lamp Comparison
- Site & Façade Lighting
- Enclosure
- Atrium
- Classrooms

creation.

- Library
- Multipurpose Room
- Phase 2 Design

Skylight Design Details:

- Add/Alternate: (12) 4'x4' fixed skylights in 28' exposed roof
- Skylights more evenly distribute daylight
- Horizontal motor shades are necessary

Original Gymnasium Window

Multipurpose Room

Skylight Layout

Skylight Analysis – Partly Cloudy Sky

Energy Savings from Switching Electric Light

1,790 kWh/year \$120/year

Structural Systems

- Introduction
- Phase 1 Design
- Phase 2 Design
 - Electrical System Overview For Clinic:
 - Natatorium
 - Clinic

General Assumptions Made:

- Existing Mechanical and Electrical rooms could be used
- Basement distribution equipment still functional
- Upper floors will remain un-renovated until further design

For Natatorium:

- All new equipment needed for pool will be located in the basement of the existing clinic
- Existing distribution equipment still functional /able to supply desired load

Clinic Lighting Load Power Load

Emergency Loads: Life

Emergency Loads: Crit

creation.

Electrical Systems

Phase 2 – Electrical System **Overview**

Total Building Load 109.8 kVA

	kVA	Natatorium/Parking	kVA
	1.9	Lighting Load	44.2
	30.0	Power Load	33.5
e Safety	1.3	Emergency Loads: Life Safety	1.8
itical	30.0	Emergency Loads: Critical	0

Structural Systems

Introduction

- Phase 1 Design
- Phase 2 Design
 - Electrical System Overview
 - Natatorium
 - Clinic

Lighting Design Details:

- Watertight fixtures suspended 24' above pool deck
- Fixture layout also provides adequate light levels in spectator seating above locker rooms
 - Fixtures controlled from separate control room
 - Lift used to perform maintenance

Pool		Criteria	As Designed
Water Surface	Avg. (fc)	30	31
water Surrace	Avg:Min	3:1	2:1
Dock Surface	Avg. (fc)	10	22
Deck Surface	Avg:Min	4:1	2.5:1
Turning Lanes	Avg. (fc)	50	48
running Lanes	Avg:Min	1.7:1	1.3:1
Power Density (W/SF)		1.2	1.03

creation.

Electrical Systems

Phase 2 - Natatorium

cture Description	Mounting	Lamp
tertight Luminaire	Suspended	(6) 54W T5HO

Introduction

- Phase 1 Design
- Phase 2 Design
 - Electrical System Overview
 - Natatorium

creation.

Clinic

Lighting Design Details:

• 2'x2' tile ceiling dropped at 8' AFF allowing for 6' plenum space

Clinic		Criteria	As Designed
Individual	Avg. (fc)	50	50
Patient Rooms	Avg:Min	2:1	1.7:1
Power Density (\	N/SF)	1.66	0.99
Double Patient	Avg. (fc)	50	50.5
Rooms	Avg:Min	2:1	1.7:1
Power Density (\	N/SF)	1.66	1.17
V Pav	Avg. (fc)	50	50
х-кау	Avg:Min	2:1	1.7:1
Power Density (\	N/SF)	1.11	0.5
Administration	Avg. (fc)	30	31
	Avg:Min	2:1	1.9:1
Power Density (\	N/SF)	0.98	0.5

Fixture Description	Mounting	Lamp
2'x4' Volumetric	Recessed	(2) 28W T8

Structural Systems

Patient Room

Fixture Description	Mounting	Lamp
2'x2' Volumetric	Recessed	(2) 17W T8

Fixture Description	Mounting	Lamp
2'x4' Volumetric	Recessed	(1) 28W T8

creation.

Integration

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room
- Phase 2
 - Natatorium
 - Clinical Renovation

creation.

Integration

Team Goal

To create an innovative, high-performance environment in a way that stimulates involvement in both education and the Community

Functionality

Define the critical function of each package and ensure that design meets criteria

Efficiency

Ensure that building engineered systems are efficient in energy usage, as well as upfront and lifecycle cost

Appeal

Create an appealing building and atmosphere which stimulates a positive learning environment

- Introduction
- Phase 1

• Enclosure

- Typical Classroom
- Atrium
- Corridor
- Multipurpose Room
- Phase 2
 - Natatorium

creation.

Clinical Renovation

Structural Systems

create a functional barrier from exterior elements while maintaining aesthetic appeal & interior comfort

Enclosure

Electrical Systems

Integrated Design Components

Precast Insulated Panels

High Performance Glazing and Daylighting Design

Integration

Green Roof

Roof

- Introduction
- Phase 1

• Enclosure

- Typical Classroom
- Atrium
- Corridor
- Multipurpose Room
- Phase 2
 - Natatorium
 - **Clinical Renovation**

Structural Systems

Carbon fiber shear reinforcement

create a functional barrier from exterior elements while maintaining aesthetic appeal & interior comfort

creation.

Precast Insulated Panels

Integrated Design Components

- Meet ASHRAE 90.1 requirements
- Optimize constructability
- Light weight \rightarrow Larger panel size
- Local fabricators

Integration

U-Value = 0.0383

Structural Systems

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room •
- Phase 2
 - Natatorium

creation.

Clinical Renovation

Glazing Types	Assembly U-Value	Assembly SHGC	VT
Double High Performance Tint (Argon)	0.54	0.39	0.607
Double Low Solar Low-E Clear (Air)	0.40	0.382	0.701
Double Glazed Triple Silver Low-E (Argon)	0.35	0.272	0.638

Electrical Systems

Fenestration Design

create a functional barrier from exterior elements while maintaining aesthetic appeal & interior comfort

Curtain Walls

Integration

Clerestories

Lightshelves and Clerestories

- Introduction
- Phase 1

• Enclosure

- Typical Classroom
- Atrium
- Corridor
- Multipurpose Room
- Phase 2
 - Natatorium

creation.

Clinical Renovation

Schematic Roof Plan

Structural Systems

Mechanical Systems

Green Roof

create a functional barrier from exterior elements while maintaining aesthetic appeal & interior comfort

Integrated Design Components

 Meet ASCE7 and ASHRAE 90.1 efficiency

- Interactive and unique learning environment
- Constructability
 - Lightweight system
 - Minimal maintenance
 - Open joint assembly

Integration

requirements and optimize energy

U-Value = 0.0333

Minimize additional structure costs

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room •
- Phase 2
 - Natatorium

creation.

Clinical Renovation •

Structural Systems

Electrical Systems

Typical Classroom

create a stimulating & comfortable learning environment

- Integrated Design Components Systems Spacing • Constructability

Structural Systems

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room •
- Phase 2
 - Natatorium
 - **Clinical Renovation** •

creation.

create a stimulating & comfortable learning environment

Integrated Design Components

Structural Systems

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room
- Phase 2
 - Natatorium
 - **Clinical Renovation** •

creation.

Virtual Mockups

Typical Classroom

Clash Detection

create a stimulating & comfortable learning environment

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room
- Phase 2
 - Natatorium
 - **Clinical Renovation** •

Structural Systems

creation.

Electrical Systems

Atrium

create a welcoming & secure entrance for students, faculty, and guests

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room
- Phase 2
 - Natatorium

creation.

Clinical Renovation

Structural Systems

Mechanical Systems

Atrium

create a welcoming & secure entrance for students, faculty, and guests

Integrated Design Components

- Architectural appeal
- Material selection
 - Kalwall vs. Opaque
- Cantilever system design
- Daylighting Influence
- Reading Rail-Load
- Smoke Control System
- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room
- Phase 2
 - Natatorium
 - Clinical Renovation

Structural Systems

creation.

Corridor

create a space which accommodates traffic flow and major building system components

Structural Systems

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room
- Phase 2
 - Natatorium

creation.

Clinical Renovation

create a space which accommodates traffic flow and major building system components

Corridor

Integrated Design Components

- Plenum space planning
- Exposed ceiling
- Acoustical considerations
- Shaft and heat pump space planning

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room
- Phase 2
 - Natatorium

creation.

Clinical Renovation •

Structural Systems

Electrical Systems

Multipurpose Room

create a flexible space for school and community use

Structural Systems

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room
- Phase 2
 - Natatorium •

creation.

Clinical Renovation

September 21st 10:00AM

Without Skylights

With Skylights

Multipurpose Room

Integrated Design Components

- Long span trusses
- Duct work coordination and air distribution
- Daylighting considerations

create a flexible space for the school and community

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room
- Phase 2
 - Natatorium
 - Clinical Renovation

Structural Systems

Proposed as Add/Alternate, \$3M budget and 3 month schedule

creation.

Natatorium

create a recreational building to encourage healthy living and community involvement

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room •
- Phase 2
 - Natatorium

creation.

Clinical Renovation

create a recreational building to encourage healthy living and community involvement

Structural Systems

Natatorium

Integrated Design Components

- Temperature and humidity design considerations
- Innovative roof design
- Suspended light fixtures meet multiple criteria

Pool		Criteria	As Designed
Water Surface	Avg.	30	31
	Avg:Min	3:1	2:1
Deck Surface	Avg.	10	22
	Avg:Min	4:1	2.5:1
Turning Lanes	Avg.	50	48
	Avg:Min	1.7:1	1.3:1
Power Density		1.2	1.03

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room •
- Phase 2
 - Natatorium
 - Clinical Renovation

Structural Systems

Included with Add/Alternate, \$3M budget and 3 month schedule

create a functional community clinic while repurposing usable site assets

creation.

Clinic Renovation

Original School Footprint

Clinic renovation floor plan

- Introduction
- Phase 1
 - Enclosure
 - Typical Classroom
 - Atrium
 - Corridor
 - Multipurpose Room
- Phase 2
 - Natatorium
 - Clinical Renovation

Structural Systems

Included with Add/Alternate, \$3M budget and 3 month schedule

creation.

Clinic Renovation

create a functional community clinic while repurposing usable site assets

Design Considerations

- Security benefits of isolating 24 hour clinic open to public
- Limits potential for spreading of germs to students
- Asbestos Abatement Plan
- Result: Effective and sustainable reuse of original elementary school

creation.

In Loving Memory

Patrick J. Zuza

creation

